412 research outputs found

    Aerosol effect on the distribution of solar radiation over the clear-sky global oceans derived from four years of MODIS retrievals

    No full text
    International audienceA four year record of MODIS spaceborne data provides a new measurement tool to assess the aerosol direct radiative effect at the top of the atmosphere. MODIS derives the aerosol optical thickness and microphysical properties from the scattered sunlight at 0.55?2.1 ?m. The monthly MODIS data used here are accumulated measurements across a wide range of view and scattering angles and represent the aerosol's spectrally resolved angular properties. We use these data consistently to compute with estimated accuracy of ±0.3 Wm?2 the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial resolution (0.5 km) allows observation of the aerosol impact between clouds that can be missed by other sensors with larger footprints. We found that over the clear-sky global ocean the aerosol reflected 5.0±0.3Wm?2 with an average radiative efficiency of 46±2 Wm?2 per unit optical thickness. The seasonal and regional distribution of the aerosol radiative effects are discussed. The analysis adds a new measurement perspective to a climate change problem dominated so far by models

    Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile

    Get PDF
    Aerosols suspended in the atmosphere interact with solar radiation and clouds, thus change the radiation energy fluxes in the atmospheric column. In this paper we measure changes in the atmospheric temperature profile as a function of the smoke loading and the cloudiness, over the Amazon basin, during the dry seasons (August and September) of 2005–2008. We show that as the aerosol optical depth (AOD) increases from 0.02 to a value of ~0.6, there is a decrease of ~4°C at 1000 hPa, and an increase of ~1.5°C at 850 hPa. The warming of the aerosol layer at 850 hPa is likely due to aerosol absorption when the particles are exposed to direct illumination by the sun. The large values of cooling in the lower layers could be explained by a combination of aerosol extinction of the solar flux in the layers aloft together with an aerosol-induced increase of cloud cover which shade the lower atmosphere. We estimate that the increase in cloud fraction due to aerosol contributes about half of the observed cooling in the lower layers

    Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data

    Get PDF
    Nasilje u obitelji je problem koji seže još u daleku prošlost i bilo je prisutno u raznim kulturama, no danas su jasno uočljive posljedice koje nasilje nad maloljetnicima nosi. Maloljetnici kao žrtve obiteljskog nasilja nose brojne posljedice koje ostavljaju trag na djetetu i na njegov razvoj. Najčešći oblici nasilja su fizičko, emocionalno, seksualno nasilje te zanemarivanje djece. Svaki oblik nasilja je specifičan i ostavlja posebne i duboke tragove na djeci. Fizičko nasilje je puno lakše prepoznati jer je vidljivo dok emocionalno nema fizički vidljive tragove. Emocionalno nasilje pak ostavlja dublje tragove na osobnost samog djeteta. Ono postaje nesigurnije, ne prima dovoljno ljubavi i pažnje te se posljedice uočavaju kod npr.neprimjerenog ponašanja, otežanog učenje, zatvorenosti, osjećaja nepripadnosti i sl. Koji god oblik nasilja bio prisutan u obitelji on utječe na kognitivni, socijalni i emocionalni razvoj djeteta te su državne institucije te koje trebaju prepoznati nasilje i preventivno djelovati te pružiti pomoć i podršku žrtvama nasilja.The Convention on the Rights of the Child states that it is the right of every child to grow up in a family, to feel safe, loved, protected and supported. The family should be a place where children will feel loved, where they will receive love, attention from their loved ones, a place where they will learn how to respect each other and prepare for the life ahead of them.Family violence is a problem that dates back to the distant past and has been present in various cultures, but the consequences of it are clearly visible today especially when it comes to children and their development. The most common forms of violence are physical, emotional, sexual violence and child neglect. Each form of violence is specific and leaves special and deep marks on the children. Physical violence is much easier to recognize because it is visible unlike emotional one where no physical traces are visible. Emotional violence, however, leaves deeper traces on the child's personality. It becomes more insecure, does not receive enough love and attention and the consequences are observed in inappropriatebehavior, difficult learning, closed mindedness, feelings of impatience, etc. Whatever form of violence is present in the family, it affects the cognitive, social and emotional development of the child and obligation of state institutions is to recognize violence and act preventively and provide assistance and support to victims of violence

    Microphysical, Macrophysical and Radiative Signatures of Volcanic Aerosols in Trade Wind Cumulus Observed by the A-Train

    Get PDF
    Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-tem1 degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount. is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research

    Aerosol-Cloud Interaction Determined by Both in Situ and Satellite Data Over a Northern High-Latitude Site

    Get PDF
    The first aerosol indirect effect over a clean, northern high-latitude site was investigated by determining the aerosol cloud interaction (ACI) using three different approaches; ground-based in situ measurements, combined ground-based in situ measurements 5 and satellite retrievals and using only satellite retrievals. The obtained values of ACI were highest for in situ ground-based data, clearly lower for combined ground-based and satellite data, and lowest for data relying solely on satellite retrievals. One of the key findings of this study was the high sensitivity of ACI to the definition of the aerosol burden. We showed that at least a part of the variability in ACI can be explained by 10 how different investigators have related dierent cloud properties to "aerosol burden"

    MODIS 3km Aerosol Product: Algorithm and Global Perspective

    Get PDF
    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community

    Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    Get PDF
    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations

    Analyzing the Effect of Intraseasonal Meteorological Variability and Land Cover on Aerosol-Cloud Interactions During the Amazonian Biomass Burning Season

    Get PDF
    High resolution aerosol, cloud, water vapor, and atmospheric profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS) are utilized to examine the impact of aerosols on clouds during the Amazonian biomass burning season in Rondnia, Brazil. It is found that increasing background column water vapor (CWV) throughout this transition season between the Amazon dry and wet seasons exerts a strong effect on cloud properties. As a result, aerosol-cloud correlations should be stratified by column water vapor to achieve a more accurate assessment of the effect of aerosols on clouds. Previous studies ignored the systematic changes to meteorological factors during the transition season, leading to possible misinterpretation of their results. Cloud fraction is shown generally to increase with aerosol optical depth (AOD) for both low and high values of column water vapor, whereas the relationship between cloud optical depth (COD) and AOD exhibits a different relationship. COD increases with AOD until AOD approx. 0.25 due to the first indirect (microphysical) effect. At higher values of AOD, COD is found to decrease with increasing AOD, which may be due to: (1) the inhibition of cloud development by absorbing aerosols (radiative effect) and/or (2) a retrieval artifact in which the measured reflectance in the visible is less than expected from a cloud top either from the darkening of clouds through the addition of carbonaceous biomass burning aerosols or subpixel dark surface contamination in the measured cloud reflectance. If (1) is a contributing mechanism, as we suspect, then a linear relationship between the indirect effect and increasing AOD, assumed in a majority of GCMs, is inaccurate since these models do not include treatment of aerosol absorption in and around clouds. The effect of aerosols on both column water vapor and clouds over varying land surface types is also analyzed. The study finds that the difference in column water vapor between forest and pasture is not correlated with aerosol loading, supporting the assumption that temporal variation of column water vapor is primarily a function of the larger-scale meteorology. However, a difference in the response of cloud fraction to increasing AOD is observed between forest and pasture. This suggests that dissimilarities between other meteorological factors, such as atmospheric stability, are likely to have an impact on aerosol-cloud correlations between different land-cover types

    Impact of Satellite Viewing-Swath Width on Global and Regional Aerosol Optical Thickness Statistics and Trends

    Get PDF
    We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate

    PopBERT. Detecting populism and its host ideologies in the German Bundestag

    Full text link
    The rise of populism concerns many political scientists and practitioners, yet the detection of its underlying language remains fragmentary. This paper aims to provide a reliable, valid, and scalable approach to measure populist stances. For that purpose, we created an annotated dataset based on parliamentary speeches of the German Bundestag (2013 to 2021). Following the ideational definition of populism, we label moralizing references to the virtuous people or the corrupt elite as core dimensions of populist language. To identify, in addition, how the thin ideology of populism is thickened, we annotate how populist statements are attached to left-wing or right-wing host ideologies. We then train a transformer-based model (PopBERT) as a multilabel classifier to detect and quantify each dimension. A battery of validation checks reveals that the model has a strong predictive accuracy, provides high qualitative face validity, matches party rankings of expert surveys, and detects out-of-sample text snippets correctly. PopBERT enables dynamic analyses of how German-speaking politicians and parties use populist language as a strategic device. Furthermore, the annotator-level data may also be applied in cross-domain applications or to develop related classifiers
    corecore